Viewing file: my_bit.h (3.44 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* Copyright (c) 2007, 2011, Oracle and/or its affiliates. Copyright (c) 2009, 2017, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
#ifndef MY_BIT_INCLUDED #define MY_BIT_INCLUDED
/* Some useful bit functions */
C_MODE_START
extern const uchar _my_bits_reverse_table[256];
/* Find smallest X in 2^X >= value This can be used to divide a number with value by doing a shift instead */
static inline uint my_bit_log2(ulong value) { uint bit; for (bit=0 ; value > 1 ; value>>=1, bit++) ; return bit; }
/* Count bits in 32bit integer
Algorithm by Sean Anderson, according to: http://graphics.stanford.edu/~seander/bithacks.html under "Counting bits set, in parallel"
(Original code public domain). */ static inline uint my_count_bits_uint32(uint32 v) { v = v - ((v >> 1) & 0x55555555); v = (v & 0x33333333) + ((v >> 2) & 0x33333333); return (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24; }
static inline uint my_count_bits(ulonglong x) { return my_count_bits_uint32((uint32)x) + my_count_bits_uint32((uint32)(x >> 32)); }
/* Next highest power of two
SYNOPSIS my_round_up_to_next_power() v Value to check
RETURN Next or equal power of 2 Note: 0 will return 0
NOTES Algorithm by Sean Anderson, according to: http://graphics.stanford.edu/~seander/bithacks.html (Original code public domain)
Comments shows how this works with 01100000000000000000000000001011 */
static inline uint32 my_round_up_to_next_power(uint32 v) { v--; /* 01100000000000000000000000001010 */ v|= v >> 1; /* 01110000000000000000000000001111 */ v|= v >> 2; /* 01111100000000000000000000001111 */ v|= v >> 4; /* 01111111110000000000000000001111 */ v|= v >> 8; /* 01111111111111111100000000001111 */ v|= v >> 16; /* 01111111111111111111111111111111 */ return v+1; /* 10000000000000000000000000000000 */ }
static inline uint32 my_clear_highest_bit(uint32 v) { uint32 w=v >> 1; w|= w >> 1; w|= w >> 2; w|= w >> 4; w|= w >> 8; w|= w >> 16; return v & w; }
static inline uint32 my_reverse_bits(uint32 key) { return ((uint32)_my_bits_reverse_table[ key & 255] << 24) | ((uint32)_my_bits_reverse_table[(key>> 8) & 255] << 16) | ((uint32)_my_bits_reverse_table[(key>>16) & 255] << 8) | (uint32)_my_bits_reverse_table[(key>>24) ]; }
/* a number with the n lowest bits set an overflow-safe version of (1 << n) - 1 */ static inline uint64 my_set_bits(int n) { return (((1ULL << (n - 1)) - 1) << 1) | 1; }
/* Create a mask of the significant bits for the last byte (1,3,7,..255) */ static inline uchar last_byte_mask(uint bits) { /* Get the number of used bits-1 (0..7) in the last byte */ unsigned int const used = (bits - 1U) & 7U; /* Return bitmask for the significant bits */ return ((2U << used) - 1); } C_MODE_END
#endif /* MY_BIT_INCLUDED */
|