!C99Shell v. 2.1 [PHP 8 Update] [02.02.2022]!

Software: Apache/2.4.53 (Unix) OpenSSL/1.1.1o PHP/7.4.29 mod_perl/2.0.12 Perl/v5.34.1. PHP/7.4.29 

uname -a: Linux vps-2738122-x 4.15.0-213-generic #224-Ubuntu SMP Mon Jun 19 13:30:12 UTC 2023 x86_64 

uid=1(daemon) gid=1(daemon) grupos=1(daemon) 

Safe-mode: OFF (not secure)

/opt/apex_tdfonline/proyectos/tdfonline/www/docs/openssl/crypto/ec/asm/   drwxr-xr-x
Free 12.04 GB of 61.93 GB (19.43%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     ecp_nistz256-x86.pl (56.26 KB)      -rwxr-xr-x
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
#! /usr/bin/env perl
# Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the Apache License 2.0 (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html


# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# ECP_NISTZ256 module for x86/SSE2.
#
# October 2014.
#
# Original ECP_NISTZ256 submission targeting x86_64 is detailed in
# http://eprint.iacr.org/2013/816. In the process of adaptation
# original .c module was made 32-bit savvy in order to make this
# implementation possible.
#
#        with/without -DECP_NISTZ256_ASM
# Pentium    +66-163%
# PIII        +72-172%
# P4        +65-132%
# Core2        +90-215%
# Sandy Bridge    +105-265% (contemporary i[57]-* are all close to this)
# Atom        +65-155%
# Opteron    +54-110%
# Bulldozer    +99-240%
# VIA Nano    +93-290%
#
# Ranges denote minimum and maximum improvement coefficients depending
# on benchmark. Lower coefficients are for ECDSA sign, server-side
# operation. Keep in mind that +200% means 3x improvement.

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";

$output=pop and open STDOUT,">$output";

&asm_init($ARGV[0],$ARGV[$#ARGV] eq "386");

$sse2=0;
for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }

&external_label("OPENSSL_ia32cap_P") if ($sse2);


########################################################################
# Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7
#
open TABLE,"<ecp_nistz256_table.c"        or
open TABLE,"<${dir}../ecp_nistz256_table.c"    or
die "failed to open ecp_nistz256_table.c:",$!;

use integer;

foreach(<TABLE>) {
    s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo;
}
close TABLE;

# See ecp_nistz256_table.c for explanation for why it's 64*16*37.
# 64*16*37-1 is because $#arr returns last valid index or @arr, not
# amount of elements.
die "insane number of elements" if ($#arr != 64*16*37-1);

&public_label("ecp_nistz256_precomputed");
&align(4096);
&set_label("ecp_nistz256_precomputed");

########################################################################
# this conversion smashes P256_POINT_AFFINE by individual bytes with
# 64 byte interval, similar to
#    1111222233334444
#    1234123412341234
for(1..37) {
    @tbl = splice(@arr,0,64*16);
    for($i=0;$i<64;$i++) {
        undef @line;
        for($j=0;$j<64;$j++) {
            push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff;
        }
        &data_byte(join(',',map { sprintf "0x%02x",$_} @line));
    }
}

########################################################################
# Keep in mind that constants are stored least to most significant word
&static_label("RR");
&set_label("RR",64);
&data_word(3,0,-1,-5,-2,-1,-3,4);    # 2^512 mod P-256

&static_label("ONE_mont");
&set_label("ONE_mont");
&data_word(1,0,0,-1,-1,-1,-2,0);

&static_label("ONE");
&set_label("ONE");
&data_word(1,0,0,0,0,0,0,0);
&asciz("ECP_NISZ256 for x86/SSE2, CRYPTOGAMS by <appro\@openssl.org>");
&align(64);

########################################################################
# void ecp_nistz256_mul_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_mul_by_2");
    &mov    ("esi",&wparam(1));
    &mov    ("edi",&wparam(0));
    &mov    ("ebp","esi");
########################################################################
# common pattern for internal functions is that %edi is result pointer,
# %esi and %ebp are input ones, %ebp being optional. %edi is preserved.
    &call    ("_ecp_nistz256_add");
&function_end("ecp_nistz256_mul_by_2");

########################################################################
# void ecp_nistz256_mul_by_3(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_mul_by_3");
    &mov    ("esi",&wparam(1));
                    # multiplication by 3 is performed
                    # as 2*n+n, but we can't use output
                    # to store 2*n, because if output
                    # pointer equals to input, then
                    # we'll get 2*n+2*n.
    &stack_push(8);            # therefore we need to allocate
                    # 256-bit intermediate buffer.
    &mov    ("edi","esp");
    &mov    ("ebp","esi");
    &call    ("_ecp_nistz256_add");
    &lea    ("esi",&DWP(0,"edi"));
    &mov    ("ebp",&wparam(1));
    &mov    ("edi",&wparam(0));
    &call    ("_ecp_nistz256_add");
    &stack_pop(8);
&function_end("ecp_nistz256_mul_by_3");

########################################################################
# void ecp_nistz256_div_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_div_by_2");
    &mov    ("esi",&wparam(1));
    &mov    ("edi",&wparam(0));
    &call    ("_ecp_nistz256_div_by_2");
&function_end("ecp_nistz256_div_by_2");

&function_begin_B("_ecp_nistz256_div_by_2");
    # tmp = a is odd ? a+mod : a
    #
    # note that because mod has special form, i.e. consists of
    # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
    # assigning least significant bit of input to one register,
    # %ebp, and its negative to another, %edx.

    &mov    ("ebp",&DWP(0,"esi"));
    &xor    ("edx","edx");
    &mov    ("ebx",&DWP(4,"esi"));
    &mov    ("eax","ebp");
    &and    ("ebp",1);
    &mov    ("ecx",&DWP(8,"esi"));
    &sub    ("edx","ebp");

    &add    ("eax","edx");
    &adc    ("ebx","edx");
    &mov    (&DWP(0,"edi"),"eax");
    &adc    ("ecx","edx");
    &mov    (&DWP(4,"edi"),"ebx");
    &mov    (&DWP(8,"edi"),"ecx");

    &mov    ("eax",&DWP(12,"esi"));
    &mov    ("ebx",&DWP(16,"esi"));
    &adc    ("eax",0);
    &mov    ("ecx",&DWP(20,"esi"));
    &adc    ("ebx",0);
    &mov    (&DWP(12,"edi"),"eax");
    &adc    ("ecx",0);
    &mov    (&DWP(16,"edi"),"ebx");
    &mov    (&DWP(20,"edi"),"ecx");

    &mov    ("eax",&DWP(24,"esi"));
    &mov    ("ebx",&DWP(28,"esi"));
    &adc    ("eax","ebp");
    &adc    ("ebx","edx");
    &mov    (&DWP(24,"edi"),"eax");
    &sbb    ("esi","esi");            # broadcast carry bit
    &mov    (&DWP(28,"edi"),"ebx");

    # ret = tmp >> 1

    &mov    ("eax",&DWP(0,"edi"));
    &mov    ("ebx",&DWP(4,"edi"));
    &mov    ("ecx",&DWP(8,"edi"));
    &mov    ("edx",&DWP(12,"edi"));

    &shr    ("eax",1);
    &mov    ("ebp","ebx");
    &shl    ("ebx",31);
    &or    ("eax","ebx");

    &shr    ("ebp",1);
    &mov    ("ebx","ecx");
    &shl    ("ecx",31);
    &mov    (&DWP(0,"edi"),"eax");
    &or    ("ebp","ecx");
    &mov    ("eax",&DWP(16,"edi"));

    &shr    ("ebx",1);
    &mov    ("ecx","edx");
    &shl    ("edx",31);
    &mov    (&DWP(4,"edi"),"ebp");
    &or    ("ebx","edx");
    &mov    ("ebp",&DWP(20,"edi"));

    &shr    ("ecx",1);
    &mov    ("edx","eax");
    &shl    ("eax",31);
    &mov    (&DWP(8,"edi"),"ebx");
    &or    ("ecx","eax");
    &mov    ("ebx",&DWP(24,"edi"));

    &shr    ("edx",1);
    &mov    ("eax","ebp");
    &shl    ("ebp",31);
    &mov    (&DWP(12,"edi"),"ecx");
    &or    ("edx","ebp");
    &mov    ("ecx",&DWP(28,"edi"));

    &shr    ("eax",1);
    &mov    ("ebp","ebx");
    &shl    ("ebx",31);
    &mov    (&DWP(16,"edi"),"edx");
    &or    ("eax","ebx");

    &shr    ("ebp",1);
    &mov    ("ebx","ecx");
    &shl    ("ecx",31);
    &mov    (&DWP(20,"edi"),"eax");
    &or    ("ebp","ecx");

    &shr    ("ebx",1);
    &shl    ("esi",31);
    &mov    (&DWP(24,"edi"),"ebp");
    &or    ("ebx","esi");            # handle top-most carry bit
    &mov    (&DWP(28,"edi"),"ebx");

    &ret    ();
&function_end_B("_ecp_nistz256_div_by_2");

########################################################################
# void ecp_nistz256_add(BN_ULONG edi[8],const BN_ULONG esi[8],
#                    const BN_ULONG ebp[8]);
&function_begin("ecp_nistz256_add");
    &mov    ("esi",&wparam(1));
    &mov    ("ebp",&wparam(2));
    &mov    ("edi",&wparam(0));
    &call    ("_ecp_nistz256_add");
&function_end("ecp_nistz256_add");

&function_begin_B("_ecp_nistz256_add");
    &mov    ("eax",&DWP(0,"esi"));
    &mov    ("ebx",&DWP(4,"esi"));
    &mov    ("ecx",&DWP(8,"esi"));
    &add    ("eax",&DWP(0,"ebp"));
    &mov    ("edx",&DWP(12,"esi"));
    &adc    ("ebx",&DWP(4,"ebp"));
    &mov    (&DWP(0,"edi"),"eax");
    &adc    ("ecx",&DWP(8,"ebp"));
    &mov    (&DWP(4,"edi"),"ebx");
    &adc    ("edx",&DWP(12,"ebp"));
    &mov    (&DWP(8,"edi"),"ecx");
    &mov    (&DWP(12,"edi"),"edx");

    &mov    ("eax",&DWP(16,"esi"));
    &mov    ("ebx",&DWP(20,"esi"));
    &mov    ("ecx",&DWP(24,"esi"));
    &adc    ("eax",&DWP(16,"ebp"));
    &mov    ("edx",&DWP(28,"esi"));
    &adc    ("ebx",&DWP(20,"ebp"));
    &mov    (&DWP(16,"edi"),"eax");
    &adc    ("ecx",&DWP(24,"ebp"));
    &mov    (&DWP(20,"edi"),"ebx");
    &mov    ("esi",0);
    &adc    ("edx",&DWP(28,"ebp"));
    &mov    (&DWP(24,"edi"),"ecx");
    &adc    ("esi",0);
    &mov    (&DWP(28,"edi"),"edx");

    # if a+b >= modulus, subtract modulus.
    #
    # But since comparison implies subtraction, we subtract modulus
    # to see if it borrows, and then subtract it for real if
    # subtraction didn't borrow.

    &mov    ("eax",&DWP(0,"edi"));
    &mov    ("ebx",&DWP(4,"edi"));
    &mov    ("ecx",&DWP(8,"edi"));
    &sub    ("eax",-1);
    &mov    ("edx",&DWP(12,"edi"));
    &sbb    ("ebx",-1);
    &mov    ("eax",&DWP(16,"edi"));
    &sbb    ("ecx",-1);
    &mov    ("ebx",&DWP(20,"edi"));
    &sbb    ("edx",0);
    &mov    ("ecx",&DWP(24,"edi"));
    &sbb    ("eax",0);
    &mov    ("edx",&DWP(28,"edi"));
    &sbb    ("ebx",0);
    &sbb    ("ecx",1);
    &sbb    ("edx",-1);
    &sbb    ("esi",0);

    # Note that because mod has special form, i.e. consists of
    # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
    # by using borrow.

    &not    ("esi");
    &mov    ("eax",&DWP(0,"edi"));
    &mov    ("ebp","esi");
    &mov    ("ebx",&DWP(4,"edi"));
    &shr    ("ebp",31);
    &mov    ("ecx",&DWP(8,"edi"));
    &sub    ("eax","esi");
    &mov    ("edx",&DWP(12,"edi"));
    &sbb    ("ebx","esi");
    &mov    (&DWP(0,"edi"),"eax");
    &sbb    ("ecx","esi");
    &mov    (&DWP(4,"edi"),"ebx");
    &sbb    ("edx",0);
    &mov    (&DWP(8,"edi"),"ecx");
    &mov    (&DWP(12,"edi"),"edx");

    &mov    ("eax",&DWP(16,"edi"));
    &mov    ("ebx",&DWP(20,"edi"));
    &mov    ("ecx",&DWP(24,"edi"));
    &sbb    ("eax",0);
    &mov    ("edx",&DWP(28,"edi"));
    &sbb    ("ebx",0);
    &mov    (&DWP(16,"edi"),"eax");
    &sbb    ("ecx","ebp");
    &mov    (&DWP(20,"edi"),"ebx");
    &sbb    ("edx","esi");
    &mov    (&DWP(24,"edi"),"ecx");
    &mov    (&DWP(28,"edi"),"edx");

    &ret    ();
&function_end_B("_ecp_nistz256_add");

########################################################################
# void ecp_nistz256_sub(BN_ULONG edi[8],const BN_ULONG esi[8],
#                    const BN_ULONG ebp[8]);
&function_begin("ecp_nistz256_sub");
    &mov    ("esi",&wparam(1));
    &mov    ("ebp",&wparam(2));
    &mov    ("edi",&wparam(0));
    &call    ("_ecp_nistz256_sub");
&function_end("ecp_nistz256_sub");

&function_begin_B("_ecp_nistz256_sub");
    &mov    ("eax",&DWP(0,"esi"));
    &mov    ("ebx",&DWP(4,"esi"));
    &mov    ("ecx",&DWP(8,"esi"));
    &sub    ("eax",&DWP(0,"ebp"));
    &mov    ("edx",&DWP(12,"esi"));
    &sbb    ("ebx",&DWP(4,"ebp"));
    &mov    (&DWP(0,"edi"),"eax");
    &sbb    ("ecx",&DWP(8,"ebp"));
    &mov    (&DWP(4,"edi"),"ebx");
    &sbb    ("edx",&DWP(12,"ebp"));
    &mov    (&DWP(8,"edi"),"ecx");
    &mov    (&DWP(12,"edi"),"edx");

    &mov    ("eax",&DWP(16,"esi"));
    &mov    ("ebx",&DWP(20,"esi"));
    &mov    ("ecx",&DWP(24,"esi"));
    &sbb    ("eax",&DWP(16,"ebp"));
    &mov    ("edx",&DWP(28,"esi"));
    &sbb    ("ebx",&DWP(20,"ebp"));
    &sbb    ("ecx",&DWP(24,"ebp"));
    &mov    (&DWP(16,"edi"),"eax");
    &sbb    ("edx",&DWP(28,"ebp"));
    &mov    (&DWP(20,"edi"),"ebx");
    &sbb    ("esi","esi");            # broadcast borrow bit
    &mov    (&DWP(24,"edi"),"ecx");
    &mov    (&DWP(28,"edi"),"edx");

    # if a-b borrows, add modulus.
    #
    # Note that because mod has special form, i.e. consists of
    # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
    # assigning borrow bit to one register, %ebp, and its negative
    # to another, %esi. But we started by calculating %esi...

    &mov    ("eax",&DWP(0,"edi"));
    &mov    ("ebp","esi");
    &mov    ("ebx",&DWP(4,"edi"));
    &shr    ("ebp",31);
    &mov    ("ecx",&DWP(8,"edi"));
    &add    ("eax","esi");
    &mov    ("edx",&DWP(12,"edi"));
    &adc    ("ebx","esi");
    &mov    (&DWP(0,"edi"),"eax");
    &adc    ("ecx","esi");
    &mov    (&DWP(4,"edi"),"ebx");
    &adc    ("edx",0);
    &mov    (&DWP(8,"edi"),"ecx");
    &mov    (&DWP(12,"edi"),"edx");

    &mov    ("eax",&DWP(16,"edi"));
    &mov    ("ebx",&DWP(20,"edi"));
    &mov    ("ecx",&DWP(24,"edi"));
    &adc    ("eax",0);
    &mov    ("edx",&DWP(28,"edi"));
    &adc    ("ebx",0);
    &mov    (&DWP(16,"edi"),"eax");
    &adc    ("ecx","ebp");
    &mov    (&DWP(20,"edi"),"ebx");
    &adc    ("edx","esi");
    &mov    (&DWP(24,"edi"),"ecx");
    &mov    (&DWP(28,"edi"),"edx");

    &ret    ();
&function_end_B("_ecp_nistz256_sub");

########################################################################
# void ecp_nistz256_neg(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_neg");
    &mov    ("ebp",&wparam(1));
    &mov    ("edi",&wparam(0));

    &xor    ("eax","eax");
    &stack_push(8);
    &mov    (&DWP(0,"esp"),"eax");
    &mov    ("esi","esp");
    &mov    (&DWP(4,"esp"),"eax");
    &mov    (&DWP(8,"esp"),"eax");
    &mov    (&DWP(12,"esp"),"eax");
    &mov    (&DWP(16,"esp"),"eax");
    &mov    (&DWP(20,"esp"),"eax");
    &mov    (&DWP(24,"esp"),"eax");
    &mov    (&DWP(28,"esp"),"eax");

    &call    ("_ecp_nistz256_sub");

    &stack_pop(8);
&function_end("ecp_nistz256_neg");

&function_begin_B("_picup_eax");
    &mov    ("eax",&DWP(0,"esp"));
    &ret    ();
&function_end_B("_picup_eax");

########################################################################
# void ecp_nistz256_to_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_to_mont");
    &mov    ("esi",&wparam(1));
    &call    ("_picup_eax");
    &set_label("pic");
    &lea    ("ebp",&DWP(&label("RR")."-".&label("pic"),"eax"));
                        if ($sse2) {
    &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
    &mov    ("eax",&DWP(0,"eax"));        }
    &mov    ("edi",&wparam(0));
    &call    ("_ecp_nistz256_mul_mont");
&function_end("ecp_nistz256_to_mont");

########################################################################
# void ecp_nistz256_from_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_from_mont");
    &mov    ("esi",&wparam(1));
    &call    ("_picup_eax");
    &set_label("pic");
    &lea    ("ebp",&DWP(&label("ONE")."-".&label("pic"),"eax"));
                        if ($sse2) {
    &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
    &mov    ("eax",&DWP(0,"eax"));        }
    &mov    ("edi",&wparam(0));
    &call    ("_ecp_nistz256_mul_mont");
&function_end("ecp_nistz256_from_mont");

########################################################################
# void ecp_nistz256_mul_mont(BN_ULONG edi[8],const BN_ULONG esi[8],
#                         const BN_ULONG ebp[8]);
&function_begin("ecp_nistz256_mul_mont");
    &mov    ("esi",&wparam(1));
    &mov    ("ebp",&wparam(2));
                        if ($sse2) {
    &call    ("_picup_eax");
    &set_label("pic");
    &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
    &mov    ("eax",&DWP(0,"eax"));        }
    &mov    ("edi",&wparam(0));
    &call    ("_ecp_nistz256_mul_mont");
&function_end("ecp_nistz256_mul_mont");

########################################################################
# void ecp_nistz256_sqr_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
&function_begin("ecp_nistz256_sqr_mont");
    &mov    ("esi",&wparam(1));
                        if ($sse2) {
    &call    ("_picup_eax");
    &set_label("pic");
    &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
    &mov    ("eax",&DWP(0,"eax"));        }
    &mov    ("edi",&wparam(0));
    &mov    ("ebp","esi");
    &call    ("_ecp_nistz256_mul_mont");
&function_end("ecp_nistz256_sqr_mont");

&function_begin_B("_ecp_nistz256_mul_mont");
                        if ($sse2) {
    &and    ("eax",1<<24|1<<26);
    &cmp    ("eax",1<<24|1<<26);        # see if XMM+SSE2 is on
    &jne    (&label("mul_mont_ialu"));

    ########################################
    # SSE2 code path featuring 32x16-bit
    # multiplications is ~2x faster than
    # IALU counterpart (except on Atom)...
    ########################################
    # stack layout:
    # +------------------------------------+< %esp
    # | 7 16-byte temporary XMM words,     |
    # | "sliding" toward lower address     |
    # .                                    .
    # +------------------------------------+
    # | unused XMM word                    |
    # +------------------------------------+< +128,%ebx
    # | 8 16-byte XMM words holding copies |
    # | of a[i]<<64|a[i]                   |
    # .                                    .
    # .                                    .
    # +------------------------------------+< +256
    &mov    ("edx","esp");
    &sub    ("esp",0x100);

    &movd    ("xmm7",&DWP(0,"ebp"));        # b[0] -> 0000.00xy
    &lea    ("ebp",&DWP(4,"ebp"));
    &pcmpeqd("xmm6","xmm6");
    &psrlq    ("xmm6",48);            # compose 0xffff<<64|0xffff

    &pshuflw("xmm7","xmm7",0b11011100);    # 0000.00xy -> 0000.0x0y
    &and    ("esp",-64);
    &pshufd    ("xmm7","xmm7",0b11011100);    # 0000.0x0y -> 000x.000y
    &lea    ("ebx",&DWP(0x80,"esp"));

    &movd    ("xmm0",&DWP(4*0,"esi"));    # a[0] -> 0000.00xy
    &pshufd    ("xmm0","xmm0",0b11001100);    # 0000.00xy -> 00xy.00xy
    &movd    ("xmm1",&DWP(4*1,"esi"));    # a[1] -> ...
    &movdqa    (&QWP(0x00,"ebx"),"xmm0");    # offload converted a[0]
    &pmuludq("xmm0","xmm7");        # a[0]*b[0]

    &movd    ("xmm2",&DWP(4*2,"esi"));
    &pshufd    ("xmm1","xmm1",0b11001100);
    &movdqa    (&QWP(0x10,"ebx"),"xmm1");
    &pmuludq("xmm1","xmm7");        # a[1]*b[0]

     &movq    ("xmm4","xmm0");        # clear upper 64 bits
     &pslldq("xmm4",6);
     &paddq    ("xmm4","xmm0");
     &movdqa("xmm5","xmm4");
     &psrldq("xmm4",10);            # upper 32 bits of a[0]*b[0]
     &pand    ("xmm5","xmm6");        # lower 32 bits of a[0]*b[0]

    # Upper half of a[0]*b[i] is carried into next multiplication
    # iteration, while lower one "participates" in actual reduction.
    # Normally latter is done by accumulating result of multiplication
    # of modulus by "magic" digit, but thanks to special form of modulus
    # and "magic" digit it can be performed only with additions and
    # subtractions (see note in IALU section below). Note that we are
    # not bothered with carry bits, they are accumulated in "flatten"
    # phase after all multiplications and reductions.

    &movd    ("xmm3",&DWP(4*3,"esi"));
    &pshufd    ("xmm2","xmm2",0b11001100);
    &movdqa    (&QWP(0x20,"ebx"),"xmm2");
    &pmuludq("xmm2","xmm7");        # a[2]*b[0]
     &paddq    ("xmm1","xmm4");        # a[1]*b[0]+hw(a[0]*b[0]), carry
    &movdqa    (&QWP(0x00,"esp"),"xmm1");    # t[0]

    &movd    ("xmm0",&DWP(4*4,"esi"));
    &pshufd    ("xmm3","xmm3",0b11001100);
    &movdqa    (&QWP(0x30,"ebx"),"xmm3");
    &pmuludq("xmm3","xmm7");        # a[3]*b[0]
    &movdqa    (&QWP(0x10,"esp"),"xmm2");

    &movd    ("xmm1",&DWP(4*5,"esi"));
    &pshufd    ("xmm0","xmm0",0b11001100);
    &movdqa    (&QWP(0x40,"ebx"),"xmm0");
    &pmuludq("xmm0","xmm7");        # a[4]*b[0]
     &paddq    ("xmm3","xmm5");        # a[3]*b[0]+lw(a[0]*b[0]), reduction step
    &movdqa    (&QWP(0x20,"esp"),"xmm3");

    &movd    ("xmm2",&DWP(4*6,"esi"));
    &pshufd    ("xmm1","xmm1",0b11001100);
    &movdqa    (&QWP(0x50,"ebx"),"xmm1");
    &pmuludq("xmm1","xmm7");        # a[5]*b[0]
    &movdqa    (&QWP(0x30,"esp"),"xmm0");
     &pshufd("xmm4","xmm5",0b10110001);    # xmm4 = xmm5<<32, reduction step

    &movd    ("xmm3",&DWP(4*7,"esi"));
    &pshufd    ("xmm2","xmm2",0b11001100);
    &movdqa    (&QWP(0x60,"ebx"),"xmm2");
    &pmuludq("xmm2","xmm7");        # a[6]*b[0]
    &movdqa    (&QWP(0x40,"esp"),"xmm1");
     &psubq    ("xmm4","xmm5");        # xmm4 = xmm5*0xffffffff, reduction step

    &movd    ("xmm0",&DWP(0,"ebp"));        # b[1] -> 0000.00xy
    &pshufd    ("xmm3","xmm3",0b11001100);
    &movdqa    (&QWP(0x70,"ebx"),"xmm3");
    &pmuludq("xmm3","xmm7");        # a[7]*b[0]

    &pshuflw("xmm7","xmm0",0b11011100);    # 0000.00xy -> 0000.0x0y
    &movdqa    ("xmm0",&QWP(0x00,"ebx"));    # pre-load converted a[0]
    &pshufd    ("xmm7","xmm7",0b11011100);    # 0000.0x0y -> 000x.000y

    &mov    ("ecx",6);
    &lea    ("ebp",&DWP(4,"ebp"));
    &jmp    (&label("madd_sse2"));

&set_label("madd_sse2",16);
     &paddq    ("xmm2","xmm5");        # a[6]*b[i-1]+lw(a[0]*b[i-1]), reduction step [modulo-scheduled]
     &paddq    ("xmm3","xmm4");        # a[7]*b[i-1]+lw(a[0]*b[i-1])*0xffffffff, reduction step [modulo-scheduled]
    &movdqa    ("xmm1",&QWP(0x10,"ebx"));
    &pmuludq("xmm0","xmm7");        # a[0]*b[i]
     &movdqa(&QWP(0x50,"esp"),"xmm2");

    &movdqa    ("xmm2",&QWP(0x20,"ebx"));
    &pmuludq("xmm1","xmm7");        # a[1]*b[i]
     &movdqa(&QWP(0x60,"esp"),"xmm3");
    &paddq    ("xmm0",&QWP(0x00,"esp"));

    &movdqa    ("xmm3",&QWP(0x30,"ebx"));
    &pmuludq("xmm2","xmm7");        # a[2]*b[i]
     &movq    ("xmm4","xmm0");        # clear upper 64 bits
     &pslldq("xmm4",6);
    &paddq    ("xmm1",&QWP(0x10,"esp"));
     &paddq    ("xmm4","xmm0");
     &movdqa("xmm5","xmm4");
     &psrldq("xmm4",10);            # upper 33 bits of a[0]*b[i]+t[0]

    &movdqa    ("xmm0",&QWP(0x40,"ebx"));
    &pmuludq("xmm3","xmm7");        # a[3]*b[i]
     &paddq    ("xmm1","xmm4");        # a[1]*b[i]+hw(a[0]*b[i]), carry
    &paddq    ("xmm2",&QWP(0x20,"esp"));
    &movdqa    (&QWP(0x00,"esp"),"xmm1");

    &movdqa    ("xmm1",&QWP(0x50,"ebx"));
    &pmuludq("xmm0","xmm7");        # a[4]*b[i]
    &paddq    ("xmm3",&QWP(0x30,"esp"));
    &movdqa    (&QWP(0x10,"esp"),"xmm2");
     &pand    ("xmm5","xmm6");        # lower 32 bits of a[0]*b[i]

    &movdqa    ("xmm2",&QWP(0x60,"ebx"));
    &pmuludq("xmm1","xmm7");        # a[5]*b[i]
     &paddq    ("xmm3","xmm5");        # a[3]*b[i]+lw(a[0]*b[i]), reduction step
    &paddq    ("xmm0",&QWP(0x40,"esp"));
    &movdqa    (&QWP(0x20,"esp"),"xmm3");
     &pshufd("xmm4","xmm5",0b10110001);    # xmm4 = xmm5<<32, reduction step

    &movdqa    ("xmm3","xmm7");
    &pmuludq("xmm2","xmm7");        # a[6]*b[i]
     &movd    ("xmm7",&DWP(0,"ebp"));        # b[i++] -> 0000.00xy
     &lea    ("ebp",&DWP(4,"ebp"));
    &paddq    ("xmm1",&QWP(0x50,"esp"));
     &psubq    ("xmm4","xmm5");        # xmm4 = xmm5*0xffffffff, reduction step
    &movdqa    (&QWP(0x30,"esp"),"xmm0");
     &pshuflw("xmm7","xmm7",0b11011100);    # 0000.00xy -> 0000.0x0y

    &pmuludq("xmm3",&QWP(0x70,"ebx"));    # a[7]*b[i]
     &pshufd("xmm7","xmm7",0b11011100);    # 0000.0x0y -> 000x.000y
     &movdqa("xmm0",&QWP(0x00,"ebx"));    # pre-load converted a[0]
    &movdqa    (&QWP(0x40,"esp"),"xmm1");
    &paddq    ("xmm2",&QWP(0x60,"esp"));

    &dec    ("ecx");
    &jnz    (&label("madd_sse2"));

     &paddq    ("xmm2","xmm5");        # a[6]*b[6]+lw(a[0]*b[6]), reduction step [modulo-scheduled]
     &paddq    ("xmm3","xmm4");        # a[7]*b[6]+lw(a[0]*b[6])*0xffffffff, reduction step [modulo-scheduled]
    &movdqa    ("xmm1",&QWP(0x10,"ebx"));
    &pmuludq("xmm0","xmm7");        # a[0]*b[7]
     &movdqa(&QWP(0x50,"esp"),"xmm2");

    &movdqa    ("xmm2",&QWP(0x20,"ebx"));
    &pmuludq("xmm1","xmm7");        # a[1]*b[7]
     &movdqa(&QWP(0x60,"esp"),"xmm3");
    &paddq    ("xmm0",&QWP(0x00,"esp"));

    &movdqa    ("xmm3",&QWP(0x30,"ebx"));
    &pmuludq("xmm2","xmm7");        # a[2]*b[7]
     &movq    ("xmm4","xmm0");        # clear upper 64 bits
     &pslldq("xmm4",6);
    &paddq    ("xmm1",&QWP(0x10,"esp"));
     &paddq    ("xmm4","xmm0");
     &movdqa("xmm5","xmm4");
     &psrldq("xmm4",10);            # upper 33 bits of a[0]*b[i]+t[0]

    &movdqa    ("xmm0",&QWP(0x40,"ebx"));
    &pmuludq("xmm3","xmm7");        # a[3]*b[7]
     &paddq    ("xmm1","xmm4");        # a[1]*b[7]+hw(a[0]*b[7]), carry
    &paddq    ("xmm2",&QWP(0x20,"esp"));
    &movdqa    (&QWP(0x00,"esp"),"xmm1");

    &movdqa    ("xmm1",&QWP(0x50,"ebx"));
    &pmuludq("xmm0","xmm7");        # a[4]*b[7]
    &paddq    ("xmm3",&QWP(0x30,"esp"));
    &movdqa    (&QWP(0x10,"esp"),"xmm2");
     &pand    ("xmm5","xmm6");        # lower 32 bits of a[0]*b[i]

    &movdqa    ("xmm2",&QWP(0x60,"ebx"));
    &pmuludq("xmm1","xmm7");        # a[5]*b[7]
     &paddq    ("xmm3","xmm5");        # reduction step
    &paddq    ("xmm0",&QWP(0x40,"esp"));
    &movdqa    (&QWP(0x20,"esp"),"xmm3");
     &pshufd("xmm4","xmm5",0b10110001);    # xmm4 = xmm5<<32, reduction step

    &movdqa    ("xmm3",&QWP(0x70,"ebx"));
    &pmuludq("xmm2","xmm7");        # a[6]*b[7]
    &paddq    ("xmm1",&QWP(0x50,"esp"));
     &psubq    ("xmm4","xmm5");        # xmm4 = xmm5*0xffffffff, reduction step
    &movdqa    (&QWP(0x30,"esp"),"xmm0");

    &pmuludq("xmm3","xmm7");        # a[7]*b[7]
    &pcmpeqd("xmm7","xmm7");
    &movdqa    ("xmm0",&QWP(0x00,"esp"));
    &pslldq    ("xmm7",8);
    &movdqa    (&QWP(0x40,"esp"),"xmm1");
    &paddq    ("xmm2",&QWP(0x60,"esp"));

     &paddq    ("xmm2","xmm5");        # a[6]*b[7]+lw(a[0]*b[7]), reduction step
     &paddq    ("xmm3","xmm4");        # a[6]*b[7]+lw(a[0]*b[7])*0xffffffff, reduction step
     &movdqa(&QWP(0x50,"esp"),"xmm2");
     &movdqa(&QWP(0x60,"esp"),"xmm3");

    &movdqa    ("xmm1",&QWP(0x10,"esp"));
    &movdqa    ("xmm2",&QWP(0x20,"esp"));
    &movdqa    ("xmm3",&QWP(0x30,"esp"));

    &movq    ("xmm4","xmm0");        # "flatten"
    &pand    ("xmm0","xmm7");
    &xor    ("ebp","ebp");
    &pslldq    ("xmm4",6);
     &movq    ("xmm5","xmm1");
    &paddq    ("xmm0","xmm4");
     &pand    ("xmm1","xmm7");
    &psrldq    ("xmm0",6);
    &movd    ("eax","xmm0");
    &psrldq    ("xmm0",4);

    &paddq    ("xmm5","xmm0");
    &movdqa    ("xmm0",&QWP(0x40,"esp"));
    &sub    ("eax",-1);            # start subtracting modulus,
                        # this is used to determine
                        # if result is larger/smaller
                        # than modulus (see below)
    &pslldq    ("xmm5",6);
     &movq    ("xmm4","xmm2");
    &paddq    ("xmm1","xmm5");
     &pand    ("xmm2","xmm7");
    &psrldq    ("xmm1",6);
    &mov    (&DWP(4*0,"edi"),"eax");
    &movd    ("eax","xmm1");
    &psrldq    ("xmm1",4);

    &paddq    ("xmm4","xmm1");
    &movdqa    ("xmm1",&QWP(0x50,"esp"));
    &sbb    ("eax",-1);
    &pslldq    ("xmm4",6);
     &movq    ("xmm5","xmm3");
    &paddq    ("xmm2","xmm4");
     &pand    ("xmm3","xmm7");
    &psrldq    ("xmm2",6);
    &mov    (&DWP(4*1,"edi"),"eax");
    &movd    ("eax","xmm2");
    &psrldq    ("xmm2",4);

    &paddq    ("xmm5","xmm2");
    &movdqa    ("xmm2",&QWP(0x60,"esp"));
    &sbb    ("eax",-1);
    &pslldq    ("xmm5",6);
     &movq    ("xmm4","xmm0");
    &paddq    ("xmm3","xmm5");
     &pand    ("xmm0","xmm7");
    &psrldq    ("xmm3",6);
    &mov    (&DWP(4*2,"edi"),"eax");
    &movd    ("eax","xmm3");
    &psrldq    ("xmm3",4);

    &paddq    ("xmm4","xmm3");
    &sbb    ("eax",0);
    &pslldq    ("xmm4",6);
     &movq    ("xmm5","xmm1");
    &paddq    ("xmm0","xmm4");
     &pand    ("xmm1","xmm7");
    &psrldq    ("xmm0",6);
    &mov    (&DWP(4*3,"edi"),"eax");
    &movd    ("eax","xmm0");
    &psrldq    ("xmm0",4);

    &paddq    ("xmm5","xmm0");
    &sbb    ("eax",0);
    &pslldq    ("xmm5",6);
     &movq    ("xmm4","xmm2");
    &paddq    ("xmm1","xmm5");
     &pand    ("xmm2","xmm7");
    &psrldq    ("xmm1",6);
    &movd    ("ebx","xmm1");
    &psrldq    ("xmm1",4);
    &mov    ("esp","edx");

    &paddq    ("xmm4","xmm1");
    &pslldq    ("xmm4",6);
    &paddq    ("xmm2","xmm4");
    &psrldq    ("xmm2",6);
    &movd    ("ecx","xmm2");
    &psrldq    ("xmm2",4);
    &sbb    ("ebx",0);
    &movd    ("edx","xmm2");
    &pextrw    ("esi","xmm2",2);        # top-most overflow bit
    &sbb    ("ecx",1);
    &sbb    ("edx",-1);
    &sbb    ("esi",0);            # borrow from subtraction

    # Final step is "if result > mod, subtract mod", and at this point
    # we have result - mod written to output buffer, as well as borrow
    # bit from this subtraction, and if borrow bit is set, we add
    # modulus back.
    #
    # Note that because mod has special form, i.e. consists of
    # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
    # assigning borrow bit to one register, %ebp, and its negative
    # to another, %esi. But we started by calculating %esi...

    &sub    ("ebp","esi");
    &add    (&DWP(4*0,"edi"),"esi");    # add modulus or zero
    &adc    (&DWP(4*1,"edi"),"esi");
    &adc    (&DWP(4*2,"edi"),"esi");
    &adc    (&DWP(4*3,"edi"),0);
    &adc    ("eax",0);
    &adc    ("ebx",0);
    &mov    (&DWP(4*4,"edi"),"eax");
    &adc    ("ecx","ebp");
    &mov    (&DWP(4*5,"edi"),"ebx");
    &adc    ("edx","esi");
    &mov    (&DWP(4*6,"edi"),"ecx");
    &mov    (&DWP(4*7,"edi"),"edx");

    &ret    ();

&set_label("mul_mont_ialu",16);            }

    ########################################
    # IALU code path suitable for all CPUs.
    ########################################
    # stack layout:
    # +------------------------------------+< %esp
    # | 8 32-bit temporary words, accessed |
    # | as circular buffer                 |
    # .                                    .
    # .                                    .
    # +------------------------------------+< +32
    # | offloaded destination pointer      |
    # +------------------------------------+
    # | unused                             |
    # +------------------------------------+< +40
    &sub    ("esp",10*4);

    &mov    ("eax",&DWP(0*4,"esi"));        # a[0]
    &mov    ("ebx",&DWP(0*4,"ebp"));        # b[0]
    &mov    (&DWP(8*4,"esp"),"edi");        # off-load dst ptr

    &mul    ("ebx");                # a[0]*b[0]
    &mov    (&DWP(0*4,"esp"),"eax");        # t[0]
    &mov    ("eax",&DWP(1*4,"esi"));
    &mov    ("ecx","edx")

    &mul    ("ebx");                # a[1]*b[0]
    &add    ("ecx","eax");
    &mov    ("eax",&DWP(2*4,"esi"));
    &adc    ("edx",0);
    &mov    (&DWP(1*4,"esp"),"ecx");        # t[1]
    &mov    ("ecx","edx");

    &mul    ("ebx");                # a[2]*b[0]
    &add    ("ecx","eax");
    &mov    ("eax",&DWP(3*4,"esi"));
    &adc    ("edx",0);
    &mov    (&DWP(2*4,"esp"),"ecx");        # t[2]
    &mov    ("ecx","edx");

    &mul    ("ebx");                # a[3]*b[0]
    &add    ("ecx","eax");
    &mov    ("eax",&DWP(4*4,"esi"));
    &adc    ("edx",0);
    &mov    (&DWP(3*4,"esp"),"ecx");        # t[3]
    &mov    ("ecx","edx");

    &mul    ("ebx");                # a[4]*b[0]
    &add    ("ecx","eax");
    &mov    ("eax",&DWP(5*4,"esi"));
    &adc    ("edx",0);
    &mov    (&DWP(4*4,"esp"),"ecx");        # t[4]
    &mov    ("ecx","edx");

    &mul    ("ebx");                # a[5]*b[0]
    &add    ("ecx","eax");
    &mov    ("eax",&DWP(6*4,"esi"));
    &adc    ("edx",0);
    &mov    (&DWP(5*4,"esp"),"ecx");        # t[5]
    &mov    ("ecx","edx");

    &mul    ("ebx");                # a[6]*b[0]
    &add    ("ecx","eax");
    &mov    ("eax",&DWP(7*4,"esi"));
    &adc    ("edx",0);
    &mov    (&DWP(6*4,"esp"),"ecx");        # t[6]
    &mov    ("ecx","edx");

    &xor    ("edi","edi");                # initial top-most carry
    &mul    ("ebx");                # a[7]*b[0]
    &add    ("ecx","eax");                # t[7]
    &mov    ("eax",&DWP(0*4,"esp"));        # t[0]
    &adc    ("edx",0);                # t[8]

for ($i=0;$i<7;$i++) {
    my $j=$i+1;

    # Reduction iteration is normally performed by accumulating
    # result of multiplication of modulus by "magic" digit [and
    # omitting least significant word, which is guaranteed to
    # be 0], but thanks to special form of modulus and "magic"
    # digit being equal to least significant word, it can be
    # performed with additions and subtractions alone. Indeed:
    #
    #        ffff.0001.0000.0000.0000.ffff.ffff.ffff
    # *                                         abcd
    # + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
    #
    # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we
    # rewrite above as:
    #
    #   xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
    # + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000
    # -      abcd.0000.0000.0000.0000.0000.0000.abcd
    #
    # or marking redundant operations:
    #
    #   xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.----
    # + abcd.0000.abcd.0000.0000.abcd.----.----.----
    # -      abcd.----.----.----.----.----.----.----

    &add    (&DWP((($i+3)%8)*4,"esp"),"eax");    # t[3]+=t[0]
    &adc    (&DWP((($i+4)%8)*4,"esp"),0);        # t[4]+=0
    &adc    (&DWP((($i+5)%8)*4,"esp"),0);        # t[5]+=0
    &adc    (&DWP((($i+6)%8)*4,"esp"),"eax");    # t[6]+=t[0]
    &adc    ("ecx",0);                # t[7]+=0
    &adc    ("edx","eax");                # t[8]+=t[0]
    &adc    ("edi",0);                # top-most carry
     &mov    ("ebx",&DWP($j*4,"ebp"));        # b[i]
    &sub    ("ecx","eax");                # t[7]-=t[0]
     &mov    ("eax",&DWP(0*4,"esi"));        # a[0]
    &sbb    ("edx",0);                # t[8]-=0
    &mov    (&DWP((($i+7)%8)*4,"esp"),"ecx");
    &sbb    ("edi",0);                # top-most carry,
                            # keep in mind that
                            # netto result is
                            # *addition* of value
                            # with (abcd<<32)-abcd
                            # on top, so that
                            # underflow is
                            # impossible, because
                            # (abcd<<32)-abcd
                            # doesn't underflow
    &mov    (&DWP((($i+8)%8)*4,"esp"),"edx");

    &mul    ("ebx");                # a[0]*b[i]
    &add    ("eax",&DWP((($j+0)%8)*4,"esp"));
    &adc    ("edx",0);
    &mov    (&DWP((($j+0)%8)*4,"esp"),"eax");
    &mov    ("eax",&DWP(1*4,"esi"));
    &mov    ("ecx","edx")

    &mul    ("ebx");                # a[1]*b[i]
    &add    ("ecx",&DWP((($j+1)%8)*4,"esp"));
    &adc    ("edx",0);
    &add    ("ecx","eax");
    &adc    ("edx",0);
    &mov    ("eax",&DWP(2*4,"esi"));
    &mov    (&DWP((($j+1)%8)*4,"esp"),"ecx");
    &mov    ("ecx","edx");

    &mul    ("ebx");                # a[2]*b[i]
    &add    ("ecx",&DWP((($j+2)%8)*4,"esp"));
    &adc    ("edx",0);
    &add    ("ecx","eax");
    &adc    ("edx",0);
    &mov    ("eax",&DWP(3*4,"esi"));
    &mov    (&DWP((($j+2)%8)*4,"esp"),"ecx");
    &mov    ("ecx","edx");

    &mul    ("ebx");                # a[3]*b[i]
    &add    ("ecx",&DWP((($j+3)%8)*4,"esp"));
    &adc    ("edx",0);
    &add    ("ecx","eax");
    &adc    ("edx",0);
    &mov    ("eax",&DWP(4*4,"esi"));
    &mov    (&DWP((($j+3)%8)*4,"esp"),"ecx");
    &mov    ("ecx","edx");

    &mul    ("ebx");                # a[4]*b[i]
    &add    ("ecx",&DWP((($j+4)%8)*4,"esp"));
    &adc    ("edx",0);
    &add    ("ecx","eax");
    &adc    ("edx",0);
    &mov    ("eax",&DWP(5*4,"esi"));
    &mov    (&DWP((($j+4)%8)*4,"esp"),"ecx");
    &mov    ("ecx","edx");

    &mul    ("ebx");                # a[5]*b[i]
    &add    ("ecx",&DWP((($j+5)%8)*4,"esp"));
    &adc    ("edx",0);
    &add    ("ecx","eax");
    &adc    ("edx",0);
    &mov    ("eax",&DWP(6*4,"esi"));
    &mov    (&DWP((($j+5)%8)*4,"esp"),"ecx");
    &mov    ("ecx","edx");

    &mul    ("ebx");                # a[6]*b[i]
    &add    ("ecx",&DWP((($j+6)%8)*4,"esp"));
    &adc    ("edx",0);
    &add    ("ecx","eax");
    &adc    ("edx",0);
    &mov    ("eax",&DWP(7*4,"esi"));
    &mov    (&DWP((($j+6)%8)*4,"esp"),"ecx");
    &mov    ("ecx","edx");

    &mul    ("ebx");                # a[7]*b[i]
    &add    ("ecx",&DWP((($j+7)%8)*4,"esp"));
    &adc    ("edx",0);
    &add    ("ecx","eax");                # t[7]
    &mov    ("eax",&DWP((($j+0)%8)*4,"esp"));    # t[0]
    &adc    ("edx","edi");                # t[8]
    &mov    ("edi",0);
    &adc    ("edi",0);                # top-most carry
}
    &mov    ("ebp",&DWP(8*4,"esp"));        # restore dst ptr
    &xor    ("esi","esi");
    my $j=$i+1;

    # last multiplication-less reduction
    &add    (&DWP((($i+3)%8)*4,"esp"),"eax");    # t[3]+=t[0]
    &adc    (&DWP((($i+4)%8)*4,"esp"),0);        # t[4]+=0
    &adc    (&DWP((($i+5)%8)*4,"esp"),0);        # t[5]+=0
    &adc    (&DWP((($i+6)%8)*4,"esp"),"eax");    # t[6]+=t[0]
    &adc    ("ecx",0);                # t[7]+=0
    &adc    ("edx","eax");                # t[8]+=t[0]
    &adc    ("edi",0);                # top-most carry
     &mov    ("ebx",&DWP((($j+1)%8)*4,"esp"));
    &sub    ("ecx","eax");                # t[7]-=t[0]
     &mov    ("eax",&DWP((($j+0)%8)*4,"esp"));
    &sbb    ("edx",0);                # t[8]-=0
    &mov    (&DWP((($i+7)%8)*4,"esp"),"ecx");
    &sbb    ("edi",0);                # top-most carry
    &mov    (&DWP((($i+8)%8)*4,"esp"),"edx");

    # Final step is "if result > mod, subtract mod", but we do it
    # "other way around", namely write result - mod to output buffer
    # and if subtraction borrowed, add modulus back.

    &mov    ("ecx",&DWP((($j+2)%8)*4,"esp"));
    &sub    ("eax",-1);
    &mov    ("edx",&DWP((($j+3)%8)*4,"esp"));
    &sbb    ("ebx",-1);
    &mov    (&DWP(0*4,"ebp"),"eax");
    &sbb    ("ecx",-1);
    &mov    (&DWP(1*4,"ebp"),"ebx");
    &sbb    ("edx",0);
    &mov    (&DWP(2*4,"ebp"),"ecx");
    &mov    (&DWP(3*4,"ebp"),"edx");

    &mov    ("eax",&DWP((($j+4)%8)*4,"esp"));
    &mov    ("ebx",&DWP((($j+5)%8)*4,"esp"));
    &mov    ("ecx",&DWP((($j+6)%8)*4,"esp"));
    &sbb    ("eax",0);
    &mov    ("edx",&DWP((($j+7)%8)*4,"esp"));
    &sbb    ("ebx",0);
    &sbb    ("ecx",1);
    &sbb    ("edx",-1);
    &sbb    ("edi",0);

    # Note that because mod has special form, i.e. consists of
    # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
    # assigning borrow bit to one register, %ebp, and its negative
    # to another, %esi. But we started by calculating %esi...

    &sub    ("esi","edi");
    &add    (&DWP(0*4,"ebp"),"edi");        # add modulus or zero
    &adc    (&DWP(1*4,"ebp"),"edi");
    &adc    (&DWP(2*4,"ebp"),"edi");
    &adc    (&DWP(3*4,"ebp"),0);
    &adc    ("eax",0);
    &adc    ("ebx",0);
    &mov    (&DWP(4*4,"ebp"),"eax");
    &adc    ("ecx","esi");
    &mov    (&DWP(5*4,"ebp"),"ebx");
    &adc    ("edx","edi");
    &mov    (&DWP(6*4,"ebp"),"ecx");
    &mov    ("edi","ebp");                # fulfill contract
    &mov    (&DWP(7*4,"ebp"),"edx");

    &add    ("esp",10*4);
    &ret    ();
&function_end_B("_ecp_nistz256_mul_mont");

########################################################################
# void ecp_nistz256_scatter_w5(void *edi,const P256_POINT *esi,
#                     int ebp);
&function_begin("ecp_nistz256_scatter_w5");
    &mov    ("edi",&wparam(0));
    &mov    ("esi",&wparam(1));
    &mov    ("ebp",&wparam(2));

    &lea    ("edi",&DWP(128-4,"edi","ebp",4));
    &mov    ("ebp",96/16);
&set_label("scatter_w5_loop");
    &mov    ("eax",&DWP(0,"esi"));
    &mov    ("ebx",&DWP(4,"esi"));
    &mov    ("ecx",&DWP(8,"esi"));
    &mov    ("edx",&DWP(12,"esi"));
    &lea    ("esi",&DWP(16,"esi"));
    &mov    (&DWP(64*0-128,"edi"),"eax");
    &mov    (&DWP(64*1-128,"edi"),"ebx");
    &mov    (&DWP(64*2-128,"edi"),"ecx");
    &mov    (&DWP(64*3-128,"edi"),"edx");
    &lea    ("edi",&DWP(64*4,"edi"));
    &dec    ("ebp");
    &jnz    (&label("scatter_w5_loop"));
&function_end("ecp_nistz256_scatter_w5");

########################################################################
# void ecp_nistz256_gather_w5(P256_POINT *edi,const void *esi,
#                          int ebp);
&function_begin("ecp_nistz256_gather_w5");
    &mov    ("esi",&wparam(1));
    &mov    ("ebp",&wparam(2));

    &lea    ("esi",&DWP(0,"esi","ebp",4));
    &neg    ("ebp");
    &sar    ("ebp",31);
    &mov    ("edi",&wparam(0));
    &lea    ("esi",&DWP(0,"esi","ebp",4));

    for($i=0;$i<24;$i+=4) {
    &mov    ("eax",&DWP(64*($i+0),"esi"));
    &mov    ("ebx",&DWP(64*($i+1),"esi"));
    &mov    ("ecx",&DWP(64*($i+2),"esi"));
    &mov    ("edx",&DWP(64*($i+3),"esi"));
    &and    ("eax","ebp");
    &and    ("ebx","ebp");
    &and    ("ecx","ebp");
    &and    ("edx","ebp");
    &mov    (&DWP(4*($i+0),"edi"),"eax");
    &mov    (&DWP(4*($i+1),"edi"),"ebx");
    &mov    (&DWP(4*($i+2),"edi"),"ecx");
    &mov    (&DWP(4*($i+3),"edi"),"edx");
    }
&function_end("ecp_nistz256_gather_w5");

########################################################################
# void ecp_nistz256_scatter_w7(void *edi,const P256_POINT_AFFINE *esi,
#                     int ebp);
&function_begin("ecp_nistz256_scatter_w7");
    &mov    ("edi",&wparam(0));
    &mov    ("esi",&wparam(1));
    &mov    ("ebp",&wparam(2));

    &lea    ("edi",&DWP(0,"edi","ebp"));
    &mov    ("ebp",64/4);
&set_label("scatter_w7_loop");
    &mov    ("eax",&DWP(0,"esi"));
    &lea    ("esi",&DWP(4,"esi"));
    &mov    (&BP(64*0,"edi"),"al");
    &mov    (&BP(64*1,"edi"),"ah");
    &shr    ("eax",16);
    &mov    (&BP(64*2,"edi"),"al");
    &mov    (&BP(64*3,"edi"),"ah");
    &lea    ("edi",&DWP(64*4,"edi"));
    &dec    ("ebp");
    &jnz    (&label("scatter_w7_loop"));
&function_end("ecp_nistz256_scatter_w7");

########################################################################
# void ecp_nistz256_gather_w7(P256_POINT_AFFINE *edi,const void *esi,
#                             int ebp);
&function_begin("ecp_nistz256_gather_w7");
    &mov    ("esi",&wparam(1));
    &mov    ("ebp",&wparam(2));

    &add    ("esi","ebp");
    &neg    ("ebp"),
    &sar    ("ebp",31);
    &mov    ("edi",&wparam(0));
    &lea    ("esi",&DWP(0,"esi","ebp"));

    for($i=0;$i<64;$i+=4) {
    &movz    ("eax",&BP(64*($i+0),"esi"));
    &movz    ("ebx",&BP(64*($i+1),"esi"));
    &movz    ("ecx",&BP(64*($i+2),"esi"));
    &and    ("eax","ebp");
    &movz    ("edx",&BP(64*($i+3),"esi"));
    &and    ("ebx","ebp");
    &mov    (&BP($i+0,"edi"),"al");
    &and    ("ecx","ebp");
    &mov    (&BP($i+1,"edi"),"bl");
    &and    ("edx","ebp");
    &mov    (&BP($i+2,"edi"),"cl");
    &mov    (&BP($i+3,"edi"),"dl");
    }
&function_end("ecp_nistz256_gather_w7");

########################################################################
# following subroutines are "literal" implementation of those found in
# ecp_nistz256.c
#
########################################################################
# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp);
#
&static_label("point_double_shortcut");
&function_begin("ecp_nistz256_point_double");
{   my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4));

    &mov    ("esi",&wparam(1));

    # above map() describes stack layout with 5 temporary
    # 256-bit vectors on top, then we take extra word for
    # OPENSSL_ia32cap_P copy.
    &stack_push(8*5+1);
                        if ($sse2) {
    &call    ("_picup_eax");
    &set_label("pic");
    &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
    &mov    ("ebp",&DWP(0,"edx"));        }

&set_label("point_double_shortcut");
    &mov    ("eax",&DWP(0,"esi"));        # copy in_x
    &mov    ("ebx",&DWP(4,"esi"));
    &mov    ("ecx",&DWP(8,"esi"));
    &mov    ("edx",&DWP(12,"esi"));
    &mov    (&DWP($in_x+0,"esp"),"eax");
    &mov    (&DWP($in_x+4,"esp"),"ebx");
    &mov    (&DWP($in_x+8,"esp"),"ecx");
    &mov    (&DWP($in_x+12,"esp"),"edx");
    &mov    ("eax",&DWP(16,"esi"));
    &mov    ("ebx",&DWP(20,"esi"));
    &mov    ("ecx",&DWP(24,"esi"));
    &mov    ("edx",&DWP(28,"esi"));
    &mov    (&DWP($in_x+16,"esp"),"eax");
    &mov    (&DWP($in_x+20,"esp"),"ebx");
    &mov    (&DWP($in_x+24,"esp"),"ecx");
    &mov    (&DWP($in_x+28,"esp"),"edx");
    &mov    (&DWP(32*5,"esp"),"ebp");    # OPENSSL_ia32cap_P copy

    &lea    ("ebp",&DWP(32,"esi"));
    &lea    ("esi",&DWP(32,"esi"));
    &lea    ("edi",&DWP($S,"esp"));
    &call    ("_ecp_nistz256_add");        # p256_mul_by_2(S, in_y);

    &mov    ("eax",&DWP(32*5,"esp"));    # OPENSSL_ia32cap_P copy
    &mov    ("esi",64);
    &add    ("esi",&wparam(1));
    &lea    ("edi",&DWP($Zsqr,"esp"));
    &mov    ("ebp","esi");
    &call    ("_ecp_nistz256_mul_mont");    # p256_sqr_mont(Zsqr, in_z);

    &mov    ("eax",&DWP(32*5,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($S,"esp"));
    &lea    ("ebp",&DWP($S,"esp"));
    &lea    ("edi",&DWP($S,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_sqr_mont(S, S);

    &mov    ("eax",&DWP(32*5,"esp"));    # OPENSSL_ia32cap_P copy
    &mov    ("ebp",&wparam(1));
    &lea    ("esi",&DWP(32,"ebp"));
    &lea    ("ebp",&DWP(64,"ebp"));
    &lea    ("edi",&DWP($tmp0,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(tmp0, in_z, in_y);

    &lea    ("esi",&DWP($in_x,"esp"));
    &lea    ("ebp",&DWP($Zsqr,"esp"));
    &lea    ("edi",&DWP($M,"esp"));
    &call    ("_ecp_nistz256_add");        # p256_add(M, in_x, Zsqr);

    &mov    ("edi",64);
    &lea    ("esi",&DWP($tmp0,"esp"));
    &lea    ("ebp",&DWP($tmp0,"esp"));
    &add    ("edi",&wparam(0));
    &call    ("_ecp_nistz256_add");        # p256_mul_by_2(res_z, tmp0);

    &lea    ("esi",&DWP($in_x,"esp"));
    &lea    ("ebp",&DWP($Zsqr,"esp"));
    &lea    ("edi",&DWP($Zsqr,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(Zsqr, in_x, Zsqr);

    &mov    ("eax",&DWP(32*5,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($S,"esp"));
    &lea    ("ebp",&DWP($S,"esp"));
    &lea    ("edi",&DWP($tmp0,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_sqr_mont(tmp0, S);

    &mov    ("eax",&DWP(32*5,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($M,"esp"));
    &lea    ("ebp",&DWP($Zsqr,"esp"));
    &lea    ("edi",&DWP($M,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(M, M, Zsqr);

    &mov    ("edi",32);
    &lea    ("esi",&DWP($tmp0,"esp"));
    &add    ("edi",&wparam(0));
    &call    ("_ecp_nistz256_div_by_2");    # p256_div_by_2(res_y, tmp0);

    &lea    ("esi",&DWP($M,"esp"));
    &lea    ("ebp",&DWP($M,"esp"));
    &lea    ("edi",&DWP($tmp0,"esp"));
    &call    ("_ecp_nistz256_add");        # 1/2 p256_mul_by_3(M, M);

    &mov    ("eax",&DWP(32*5,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($in_x,"esp"));
    &lea    ("ebp",&DWP($S,"esp"));
    &lea    ("edi",&DWP($S,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(S, S, in_x);

    &lea    ("esi",&DWP($tmp0,"esp"));
    &lea    ("ebp",&DWP($M,"esp"));
    &lea    ("edi",&DWP($M,"esp"));
    &call    ("_ecp_nistz256_add");        # 2/2 p256_mul_by_3(M, M);

    &lea    ("esi",&DWP($S,"esp"));
    &lea    ("ebp",&DWP($S,"esp"));
    &lea    ("edi",&DWP($tmp0,"esp"));
    &call    ("_ecp_nistz256_add");        # p256_mul_by_2(tmp0, S);

    &mov    ("eax",&DWP(32*5,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($M,"esp"));
    &lea    ("ebp",&DWP($M,"esp"));
    &mov    ("edi",&wparam(0));
    &call    ("_ecp_nistz256_mul_mont");    # p256_sqr_mont(res_x, M);

    &mov    ("esi","edi");            # %edi is still res_x here
    &lea    ("ebp",&DWP($tmp0,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(res_x, res_x, tmp0);

    &lea    ("esi",&DWP($S,"esp"));
    &mov    ("ebp","edi");            # %edi is still res_x
    &lea    ("edi",&DWP($S,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(S, S, res_x);

    &mov    ("eax",&DWP(32*5,"esp"));    # OPENSSL_ia32cap_P copy
    &mov    ("esi","edi");            # %edi is still &S
    &lea    ("ebp",&DWP($M,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(S, S, M);

    &mov    ("ebp",32);
    &lea    ("esi",&DWP($S,"esp"));
    &add    ("ebp",&wparam(0));
    &mov    ("edi","ebp");
    &call    ("_ecp_nistz256_sub");        # p256_sub(res_y, S, res_y);

    &stack_pop(8*5+1);
} &function_end("ecp_nistz256_point_double");

########################################################################
# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1,
#                          const P256_POINT *in2);
&function_begin("ecp_nistz256_point_add");
{   my ($res_x,$res_y,$res_z,
    $in1_x,$in1_y,$in1_z,
    $in2_x,$in2_y,$in2_z,
    $H,$Hsqr,$R,$Rsqr,$Hcub,
    $U1,$U2,$S1,$S2)=map(32*$_,(0..17));
    my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr);

    &mov    ("esi",&wparam(2));

    # above map() describes stack layout with 18 temporary
    # 256-bit vectors on top, then we take extra words for
    # ~in1infty, ~in2infty, result of check for zero and
    # OPENSSL_ia32cap_P copy. [one unused word for padding]
    &stack_push(8*18+5);
                        if ($sse2) {
    &call    ("_picup_eax");
    &set_label("pic");
    &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
    &mov    ("ebp",&DWP(0,"edx"));        }

    &lea    ("edi",&DWP($in2_x,"esp"));
    for($i=0;$i<96;$i+=16) {
    &mov    ("eax",&DWP($i+0,"esi"));    # copy in2
    &mov    ("ebx",&DWP($i+4,"esi"));
    &mov    ("ecx",&DWP($i+8,"esi"));
    &mov    ("edx",&DWP($i+12,"esi"));
    &mov    (&DWP($i+0,"edi"),"eax");
    &mov    (&DWP(32*18+12,"esp"),"ebp")    if ($i==0);
    &mov    ("ebp","eax")            if ($i==64);
    &or    ("ebp","eax")            if ($i>64);
    &mov    (&DWP($i+4,"edi"),"ebx");
    &or    ("ebp","ebx")            if ($i>=64);
    &mov    (&DWP($i+8,"edi"),"ecx");
    &or    ("ebp","ecx")            if ($i>=64);
    &mov    (&DWP($i+12,"edi"),"edx");
    &or    ("ebp","edx")            if ($i>=64);
    }
    &xor    ("eax","eax");
    &mov    ("esi",&wparam(1));
    &sub    ("eax","ebp");
    &or    ("ebp","eax");
    &sar    ("ebp",31);
    &mov    (&DWP(32*18+4,"esp"),"ebp");    # ~in2infty

    &lea    ("edi",&DWP($in1_x,"esp"));
    for($i=0;$i<96;$i+=16) {
    &mov    ("eax",&DWP($i+0,"esi"));    # copy in1
    &mov    ("ebx",&DWP($i+4,"esi"));
    &mov    ("ecx",&DWP($i+8,"esi"));
    &mov    ("edx",&DWP($i+12,"esi"));
    &mov    (&DWP($i+0,"edi"),"eax");
    &mov    ("ebp","eax")            if ($i==64);
    &or    ("ebp","eax")            if ($i>64);
    &mov    (&DWP($i+4,"edi"),"ebx");
    &or    ("ebp","ebx")            if ($i>=64);
    &mov    (&DWP($i+8,"edi"),"ecx");
    &or    ("ebp","ecx")            if ($i>=64);
    &mov    (&DWP($i+12,"edi"),"edx");
    &or    ("ebp","edx")            if ($i>=64);
    }
    &xor    ("eax","eax");
    &sub    ("eax","ebp");
    &or    ("ebp","eax");
    &sar    ("ebp",31);
    &mov    (&DWP(32*18+0,"esp"),"ebp");    # ~in1infty

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($in2_z,"esp"));
    &lea    ("ebp",&DWP($in2_z,"esp"));
    &lea    ("edi",&DWP($Z2sqr,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_sqr_mont(Z2sqr, in2_z);

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($in1_z,"esp"));
    &lea    ("ebp",&DWP($in1_z,"esp"));
    &lea    ("edi",&DWP($Z1sqr,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_sqr_mont(Z1sqr, in1_z);

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($Z2sqr,"esp"));
    &lea    ("ebp",&DWP($in2_z,"esp"));
    &lea    ("edi",&DWP($S1,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(S1, Z2sqr, in2_z);

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($Z1sqr,"esp"));
    &lea    ("ebp",&DWP($in1_z,"esp"));
    &lea    ("edi",&DWP($S2,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(S2, Z1sqr, in1_z);

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($in1_y,"esp"));
    &lea    ("ebp",&DWP($S1,"esp"));
    &lea    ("edi",&DWP($S1,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(S1, S1, in1_y);

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($in2_y,"esp"));
    &lea    ("ebp",&DWP($S2,"esp"));
    &lea    ("edi",&DWP($S2,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(S2, S2, in2_y);

    &lea    ("esi",&DWP($S2,"esp"));
    &lea    ("ebp",&DWP($S1,"esp"));
    &lea    ("edi",&DWP($R,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(R, S2, S1);

    &or    ("ebx","eax");            # see if result is zero
    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &or    ("ebx","ecx");
    &or    ("ebx","edx");
    &or    ("ebx",&DWP(0,"edi"));
    &or    ("ebx",&DWP(4,"edi"));
     &lea    ("esi",&DWP($in1_x,"esp"));
    &or    ("ebx",&DWP(8,"edi"));
     &lea    ("ebp",&DWP($Z2sqr,"esp"));
    &or    ("ebx",&DWP(12,"edi"));
     &lea    ("edi",&DWP($U1,"esp"));
    &mov    (&DWP(32*18+8,"esp"),"ebx");

    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(U1, in1_x, Z2sqr);

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($in2_x,"esp"));
    &lea    ("ebp",&DWP($Z1sqr,"esp"));
    &lea    ("edi",&DWP($U2,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(U2, in2_x, Z1sqr);

    &lea    ("esi",&DWP($U2,"esp"));
    &lea    ("ebp",&DWP($U1,"esp"));
    &lea    ("edi",&DWP($H,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(H, U2, U1);

    &or    ("eax","ebx");            # see if result is zero
    &or    ("eax","ecx");
    &or    ("eax","edx");
    &or    ("eax",&DWP(0,"edi"));
    &or    ("eax",&DWP(4,"edi"));
    &or    ("eax",&DWP(8,"edi"));
    &or    ("eax",&DWP(12,"edi"));        # ~is_equal(U1,U2)

    &mov    ("ebx",&DWP(32*18+0,"esp"));    # ~in1infty
    &not    ("ebx");            # -1/0 -> 0/-1
    &or    ("eax","ebx");
    &mov    ("ebx",&DWP(32*18+4,"esp"));    # ~in2infty
    &not    ("ebx");            # -1/0 -> 0/-1
    &or    ("eax","ebx");
    &or    ("eax",&DWP(32*18+8,"esp"));    # ~is_equal(S1,S2)

    # if (~is_equal(U1,U2) | in1infty | in2infty | ~is_equal(S1,S2))
    &data_byte(0x3e);            # predict taken
    &jnz    (&label("add_proceed"));

&set_label("add_double",16);
    &mov    ("esi",&wparam(1));
    &mov    ("ebp",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &add    ("esp",4*((8*18+5)-(8*5+1)));    # difference in frame sizes
    &jmp    (&label("point_double_shortcut"));

&set_label("add_proceed",16);
    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($R,"esp"));
    &lea    ("ebp",&DWP($R,"esp"));
    &lea    ("edi",&DWP($Rsqr,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_sqr_mont(Rsqr, R);

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($H,"esp"));
    &lea    ("ebp",&DWP($in1_z,"esp"));
    &lea    ("edi",&DWP($res_z,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(res_z, H, in1_z);

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($H,"esp"));
    &lea    ("ebp",&DWP($H,"esp"));
    &lea    ("edi",&DWP($Hsqr,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_sqr_mont(Hsqr, H);

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($in2_z,"esp"));
    &lea    ("ebp",&DWP($res_z,"esp"));
    &lea    ("edi",&DWP($res_z,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(res_z, res_z, in2_z);

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($Hsqr,"esp"));
    &lea    ("ebp",&DWP($U1,"esp"));
    &lea    ("edi",&DWP($U2,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(U2, U1, Hsqr);

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($H,"esp"));
    &lea    ("ebp",&DWP($Hsqr,"esp"));
    &lea    ("edi",&DWP($Hcub,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(Hcub, Hsqr, H);

    &lea    ("esi",&DWP($U2,"esp"));
    &lea    ("ebp",&DWP($U2,"esp"));
    &lea    ("edi",&DWP($Hsqr,"esp"));
    &call    ("_ecp_nistz256_add");        # p256_mul_by_2(Hsqr, U2);

    &lea    ("esi",&DWP($Rsqr,"esp"));
    &lea    ("ebp",&DWP($Hsqr,"esp"));
    &lea    ("edi",&DWP($res_x,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(res_x, Rsqr, Hsqr);

    &lea    ("esi",&DWP($res_x,"esp"));
    &lea    ("ebp",&DWP($Hcub,"esp"));
    &lea    ("edi",&DWP($res_x,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(res_x, res_x, Hcub);

    &lea    ("esi",&DWP($U2,"esp"));
    &lea    ("ebp",&DWP($res_x,"esp"));
    &lea    ("edi",&DWP($res_y,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(res_y, U2, res_x);

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($Hcub,"esp"));
    &lea    ("ebp",&DWP($S1,"esp"));
    &lea    ("edi",&DWP($S2,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(S2, S1, Hcub);

    &mov    ("eax",&DWP(32*18+12,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($R,"esp"));
    &lea    ("ebp",&DWP($res_y,"esp"));
    &lea    ("edi",&DWP($res_y,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(res_y, R, res_y);

    &lea    ("esi",&DWP($res_y,"esp"));
    &lea    ("ebp",&DWP($S2,"esp"));
    &lea    ("edi",&DWP($res_y,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(res_y, res_y, S2);

    &mov    ("ebp",&DWP(32*18+0,"esp"));    # ~in1infty
    &mov    ("esi",&DWP(32*18+4,"esp"));    # ~in2infty
    &mov    ("edi",&wparam(0));
    &mov    ("edx","ebp");
    &not    ("ebp");
    &and    ("edx","esi");            # ~in1infty & ~in2infty
    &and    ("ebp","esi");            # in1infty & ~in2infty
    &not    ("esi");            # in2infty

    ########################################
    # conditional moves
    for($i=64;$i<96;$i+=4) {
    &mov    ("eax","edx");            # ~in1infty & ~in2infty
    &and    ("eax",&DWP($res_x+$i,"esp"));
    &mov    ("ebx","ebp");            # in1infty & ~in2infty
    &and    ("ebx",&DWP($in2_x+$i,"esp"));
    &mov    ("ecx","esi");            # in2infty
    &and    ("ecx",&DWP($in1_x+$i,"esp"));
    &or    ("eax","ebx");
    &or    ("eax","ecx");
    &mov    (&DWP($i,"edi"),"eax");
    }
    for($i=0;$i<64;$i+=4) {
    &mov    ("eax","edx");            # ~in1infty & ~in2infty
    &and    ("eax",&DWP($res_x+$i,"esp"));
    &mov    ("ebx","ebp");            # in1infty & ~in2infty
    &and    ("ebx",&DWP($in2_x+$i,"esp"));
    &mov    ("ecx","esi");            # in2infty
    &and    ("ecx",&DWP($in1_x+$i,"esp"));
    &or    ("eax","ebx");
    &or    ("eax","ecx");
    &mov    (&DWP($i,"edi"),"eax");
    }
    &set_label("add_done");
    &stack_pop(8*18+5);
} &function_end("ecp_nistz256_point_add");

########################################################################
# void ecp_nistz256_point_add_affine(P256_POINT *out,
#                     const P256_POINT *in1,
#                     const P256_POINT_AFFINE *in2);
&function_begin("ecp_nistz256_point_add_affine");
{
    my ($res_x,$res_y,$res_z,
    $in1_x,$in1_y,$in1_z,
    $in2_x,$in2_y,
    $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14));
    my $Z1sqr = $S2;
    my @ONE_mont=(1,0,0,-1,-1,-1,-2,0);

    &mov    ("esi",&wparam(1));

    # above map() describes stack layout with 15 temporary
    # 256-bit vectors on top, then we take extra words for
    # ~in1infty, ~in2infty, and OPENSSL_ia32cap_P copy.
    &stack_push(8*15+3);
                        if ($sse2) {
    &call    ("_picup_eax");
    &set_label("pic");
    &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
    &mov    ("ebp",&DWP(0,"edx"));        }

    &lea    ("edi",&DWP($in1_x,"esp"));
    for($i=0;$i<96;$i+=16) {
    &mov    ("eax",&DWP($i+0,"esi"));    # copy in1
    &mov    ("ebx",&DWP($i+4,"esi"));
    &mov    ("ecx",&DWP($i+8,"esi"));
    &mov    ("edx",&DWP($i+12,"esi"));
    &mov    (&DWP($i+0,"edi"),"eax");
    &mov    (&DWP(32*15+8,"esp"),"ebp")    if ($i==0);
    &mov    ("ebp","eax")            if ($i==64);
    &or    ("ebp","eax")            if ($i>64);
    &mov    (&DWP($i+4,"edi"),"ebx");
    &or    ("ebp","ebx")            if ($i>=64);
    &mov    (&DWP($i+8,"edi"),"ecx");
    &or    ("ebp","ecx")            if ($i>=64);
    &mov    (&DWP($i+12,"edi"),"edx");
    &or    ("ebp","edx")            if ($i>=64);
    }
    &xor    ("eax","eax");
    &mov    ("esi",&wparam(2));
    &sub    ("eax","ebp");
    &or    ("ebp","eax");
    &sar    ("ebp",31);
    &mov    (&DWP(32*15+0,"esp"),"ebp");    # ~in1infty

    &lea    ("edi",&DWP($in2_x,"esp"));
    for($i=0;$i<64;$i+=16) {
    &mov    ("eax",&DWP($i+0,"esi"));    # copy in2
    &mov    ("ebx",&DWP($i+4,"esi"));
    &mov    ("ecx",&DWP($i+8,"esi"));
    &mov    ("edx",&DWP($i+12,"esi"));
    &mov    (&DWP($i+0,"edi"),"eax");
    &mov    ("ebp","eax")            if ($i==0);
    &or    ("ebp","eax")            if ($i!=0);
    &mov    (&DWP($i+4,"edi"),"ebx");
    &or    ("ebp","ebx");
    &mov    (&DWP($i+8,"edi"),"ecx");
    &or    ("ebp","ecx");
    &mov    (&DWP($i+12,"edi"),"edx");
    &or    ("ebp","edx");
    }
    &xor    ("ebx","ebx");
    &mov    ("eax",&DWP(32*15+8,"esp"));    # OPENSSL_ia32cap_P copy
    &sub    ("ebx","ebp");
     &lea    ("esi",&DWP($in1_z,"esp"));
    &or    ("ebx","ebp");
     &lea    ("ebp",&DWP($in1_z,"esp"));
    &sar    ("ebx",31);
     &lea    ("edi",&DWP($Z1sqr,"esp"));
    &mov    (&DWP(32*15+4,"esp"),"ebx");    # ~in2infty

    &call    ("_ecp_nistz256_mul_mont");    # p256_sqr_mont(Z1sqr, in1_z);

    &mov    ("eax",&DWP(32*15+8,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($in2_x,"esp"));
    &mov    ("ebp","edi");            # %esi is stull &Z1sqr
    &lea    ("edi",&DWP($U2,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(U2, Z1sqr, in2_x);

    &mov    ("eax",&DWP(32*15+8,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($in1_z,"esp"));
    &lea    ("ebp",&DWP($Z1sqr,"esp"));
    &lea    ("edi",&DWP($S2,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(S2, Z1sqr, in1_z);

    &lea    ("esi",&DWP($U2,"esp"));
    &lea    ("ebp",&DWP($in1_x,"esp"));
    &lea    ("edi",&DWP($H,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(H, U2, in1_x);

    &mov    ("eax",&DWP(32*15+8,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($in2_y,"esp"));
    &lea    ("ebp",&DWP($S2,"esp"));
    &lea    ("edi",&DWP($S2,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(S2, S2, in2_y);

    &mov    ("eax",&DWP(32*15+8,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($in1_z,"esp"));
    &lea    ("ebp",&DWP($H,"esp"));
    &lea    ("edi",&DWP($res_z,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(res_z, H, in1_z);

    &lea    ("esi",&DWP($S2,"esp"));
    &lea    ("ebp",&DWP($in1_y,"esp"));
    &lea    ("edi",&DWP($R,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(R, S2, in1_y);

    &mov    ("eax",&DWP(32*15+8,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($H,"esp"));
    &lea    ("ebp",&DWP($H,"esp"));
    &lea    ("edi",&DWP($Hsqr,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_sqr_mont(Hsqr, H);

    &mov    ("eax",&DWP(32*15+8,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($R,"esp"));
    &lea    ("ebp",&DWP($R,"esp"));
    &lea    ("edi",&DWP($Rsqr,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_sqr_mont(Rsqr, R);

    &mov    ("eax",&DWP(32*15+8,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($in1_x,"esp"));
    &lea    ("ebp",&DWP($Hsqr,"esp"));
    &lea    ("edi",&DWP($U2,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(U2, in1_x, Hsqr);

    &mov    ("eax",&DWP(32*15+8,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($H,"esp"));
    &lea    ("ebp",&DWP($Hsqr,"esp"));
    &lea    ("edi",&DWP($Hcub,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(Hcub, Hsqr, H);

    &lea    ("esi",&DWP($U2,"esp"));
    &lea    ("ebp",&DWP($U2,"esp"));
    &lea    ("edi",&DWP($Hsqr,"esp"));
    &call    ("_ecp_nistz256_add");        # p256_mul_by_2(Hsqr, U2);

    &lea    ("esi",&DWP($Rsqr,"esp"));
    &lea    ("ebp",&DWP($Hsqr,"esp"));
    &lea    ("edi",&DWP($res_x,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(res_x, Rsqr, Hsqr);

    &lea    ("esi",&DWP($res_x,"esp"));
    &lea    ("ebp",&DWP($Hcub,"esp"));
    &lea    ("edi",&DWP($res_x,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(res_x, res_x, Hcub);

    &lea    ("esi",&DWP($U2,"esp"));
    &lea    ("ebp",&DWP($res_x,"esp"));
    &lea    ("edi",&DWP($res_y,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(res_y, U2, res_x);

    &mov    ("eax",&DWP(32*15+8,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($Hcub,"esp"));
    &lea    ("ebp",&DWP($in1_y,"esp"));
    &lea    ("edi",&DWP($S2,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(S2, Hcub, in1_y);

    &mov    ("eax",&DWP(32*15+8,"esp"));    # OPENSSL_ia32cap_P copy
    &lea    ("esi",&DWP($R,"esp"));
    &lea    ("ebp",&DWP($res_y,"esp"));
    &lea    ("edi",&DWP($res_y,"esp"));
    &call    ("_ecp_nistz256_mul_mont");    # p256_mul_mont(res_y, res_y, R);

    &lea    ("esi",&DWP($res_y,"esp"));
    &lea    ("ebp",&DWP($S2,"esp"));
    &lea    ("edi",&DWP($res_y,"esp"));
    &call    ("_ecp_nistz256_sub");        # p256_sub(res_y, res_y, S2);

    &mov    ("ebp",&DWP(32*15+0,"esp"));    # ~in1infty
    &mov    ("esi",&DWP(32*15+4,"esp"));    # ~in2infty
    &mov    ("edi",&wparam(0));
    &mov    ("edx","ebp");
    &not    ("ebp");
    &and    ("edx","esi");            # ~in1infty & ~in2infty
    &and    ("ebp","esi");            # in1infty & ~in2infty
    &not    ("esi");            # in2infty

    ########################################
    # conditional moves
    for($i=64;$i<96;$i+=4) {
    my $one=@ONE_mont[($i-64)/4];

    &mov    ("eax","edx");
    &and    ("eax",&DWP($res_x+$i,"esp"));
    &mov    ("ebx","ebp")            if ($one && $one!=-1);
    &and    ("ebx",$one)            if ($one && $one!=-1);
    &mov    ("ecx","esi");
    &and    ("ecx",&DWP($in1_x+$i,"esp"));
    &or    ("eax",$one==-1?"ebp":"ebx")    if ($one);
    &or    ("eax","ecx");
    &mov    (&DWP($i,"edi"),"eax");
    }
    for($i=0;$i<64;$i+=4) {
    &mov    ("eax","edx");            # ~in1infty & ~in2infty
    &and    ("eax",&DWP($res_x+$i,"esp"));
    &mov    ("ebx","ebp");            # in1infty & ~in2infty
    &and    ("ebx",&DWP($in2_x+$i,"esp"));
    &mov    ("ecx","esi");            # in2infty
    &and    ("ecx",&DWP($in1_x+$i,"esp"));
    &or    ("eax","ebx");
    &or    ("eax","ecx");
    &mov    (&DWP($i,"edi"),"eax");
    }
    &stack_pop(8*15+3);
} &function_end("ecp_nistz256_point_add_affine");

&asm_finish();

close STDOUT or die "error closing STDOUT: $!";

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ ok ]

:: Make Dir ::
 
[ ok ]
:: Make File ::
 
[ ok ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 2.1 [PHP 8 Update] [02.02.2022] maintained byC99Shell Github | Generation time: 0.5313 ]--